A Non-linear Optimal Discontinuous Petrov-galerkin Method for Stabilising the Solution of the Transport Equation
نویسندگان
چکیده
This paper describes a new Non-Linear Discontinuous Petrov-Galerkin (NDPG) method and application to the one-speed Boltzmann Transport Equation (BTE) for space-time problems. The purpose of the method is to remove unwanted oscillations in the transport solution which occur in the vicinity of sharp flux gradients, while improving computational efficiency and numerical accuracy. This is achieved by applying artificial dissipation in the solution gradient direction, internal to an element using a novel finite element (FE) Riemann approach. The amount of dissipation added acts internal to each element. This is done using a gradient-informed scaling of the advection velocities in the stabilisation term. This makes the method in its most general form non-linear. The method is designed to be independent of angular expansion framework. This is demonstrated for the both discrete ordinates (SN ) and spherical harmonics (PN ) descriptions of the angular variable. Results show the scheme performs consistently well in demanding time dependent and multi-dimensional radiation transport problems.
منابع مشابه
Meshless Local Petrov-Galerkin Method– Steady, Non-Isothermal Fluid Flow Applications
Abstract : The meshless local Petrov-Galerkin method with unity as the weighting function has been applied to the solution of the Navier-Stokes and energy equations. The Navier-Stokes equations in terms of the stream function and vorticity formulation together with the energy equation are solved for a driven cavity flow for moderate Reynolds numbers using different point distributions. The L2-...
متن کاملA Hybridized Crouziex-Raviart Nonconforming Finite Element and Discontinuous Galerkin Method for a Two-Phase Flow in the Porous Media
In this study, we present a numerical solution for the two-phase incompressible flow in the porous media under isothermal condition using a hybrid of the linear lower-order nonconforming finite element and the interior penalty discontinuous Galerkin (DG) method. This hybridization is developed for the first time in the two-phase modeling and considered as the main novelty of this research.The p...
متن کاملThe Petrov-Galerkin Method and Chebyshev Multiwavelet Basis for Solving Integro-Differential Equations
Abstract: There are some methods for solving integro-differential equations. In this work, we solve the general-order Feredholm integro-differential equations. The Petrov-Galerkin method by considering Chebyshev multiwavelet basis is used. By using the orthonormality property of basis elements in discretizing the equation, we can reduce an equation to a linear system with small dimension. For ...
متن کاملUSING PG ELEMENTS FOR SOLVING FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS
In this paper, we use Petrov-Galerkin elements such as continuous and discontinuous Lagrange-type k-0 elements and Hermite-type 3-1 elements to find an approximate solution for linear Fredholm integro-differential equations on $[0,1]$. Also we show the efficiency of this method by some numerical examples
متن کاملSpace-Time Discontinuous Galerkin Discretizations for Linear First-Order Hyperbolic Evolution Systems
We introduce a space-time discretization for linear first-order hyperbolic evolution systems using a discontinuous Galerkin approximation in space and a Petrov–Galerkin scheme in time. We show well-posedness and convergence of the discrete system. Then we introduce an adaptive strategy based on goal-oriented dual-weighted error estimation. The full space-time linear system is solved with a para...
متن کامل